Abstract

Small unmanned aerial vehicles (SUAVs) operating in urban environments must deal with complex wind flows and endurance limitations caused by current battery technology. Birds offer inspiration regarding how to fly in these environments and how to exploit complex wind flows as an energy source. On a broad scale, migrating birds adjust airspeed to minimize cost of transport (COT) in response to wind conditions, but it is unknown whether birds implement these strategies in fine-scale, complex environments. GPS backpacks were used to track 11 urban nesting gulls and found they soared extensively during daily commutes, using thermal and orographic updrafts. This paper outlines COT theory and proposes a model for optimizing airspeed for wind while maintaining flight trajectory. The gull flight paths were tested for COT adjustments, considering their flapping and soaring strategies, and it was found that the birds were able to make energy savings of 31% based on having a best glide speed when soaring that was similar to their minimum power speed when flapping. These models calculated optimum airspeeds based on wind speed and direction and could be implemented on SUAV platforms with wind sensing capabilities. This approach could significantly reduce energy requirements for SUAVs flying in urban environments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.