Abstract
Avian blood parasites, from the genera Plasmodium, Haemoproteus and Leucocytozoon, are predicted to alter their range and prevalence as global temperatures change, and host and vector ranges shift. Understanding large-scale patterns in the prevalence and diversity of avian malaria and malaria-like parasites is important due to an incomplete understanding of their effects in the wild, where studies suggest even light parasitaemia can potentially cause rapid mortality, especially in naïve populations. We conducted phylogenetically controlled analyses to test for differences in prevalence and lineage diversity of haemoparasite infection (for Plasmodium, Haemoproteus and Leucocytozoon) in and between resident and migratory species along the African-Eurasian flyway. To test whether migratory strategy or range size drives differences in parasite prevalence and diversity between resident and migrant species, we included three categories of resident species: Eurasian only (n = 36 species), African only (n = 41), and species resident on both continents (n = 17), alongside intercontinental migrants (n = 64), using a subset of data from the MalAvi database comprising 27,861 individual birds. We found that species resident on both continents had a higher overall parasite diversity than all other categories. Eurasian residents had lower Plasmodium diversity than all other groups, and both migrants and species resident on both continents had higher Haemoproteus diversity than both African and Eurasian residents. Leucocytozoon diversity did not differ between groups. Prevalence patterns were less clear, with marked differences between genera. Both Plasmodium and Leucocytozoon prevalence was higher in species resident on both continents and African residents than in migrants and Eurasian residents. Haemoproteus prevalence was lower in Eurasian residents than species resident on both continents. Our findings contrast with previous findings in the North-South American flyway, where long-distance migrants had higher parasite diversity than residents and short-distance migrants, although we found contrasting patterns for parasite diversity to those seen for parasite prevalence. Crucially, our results suggest that geographic range may be more important than migratory strategy in driving parasite diversity within species along the African-Palaearctic flyway. Our findings differ between the three parasite genera included in our analysis, suggesting that vector ecology may be important in determining these large-scale patterns. Our results add to our understanding of global patterns in parasite diversity and abundance, and highlight the need to better understand the influence of vector ecology to understand the drivers of infection risk and predict responses to environmental change.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.