Abstract

Lattice structures for engineering applications are patterns of unit cells designed to make a larger functional structure. Research on lattice structures ranges in many fields, from mechanical characterization and cell and pattern designs in respect of their applications, to the manufacturing process and its final shape control. From the manufacturing point of view, some kinds of lattice structures can be infeasible when approached with traditional manufacturing methods. It may offer an inevitable limitation of their adoption. However, advancements in Additive Manufacturing (AM) have solved this manufacturing issue to a great extent, allowing to obtain major complexity of the cells that can be achieved. The topology, shape of the unit cell, and the characteristics of its replication pattern allow us to obtain many kinds of structures in respect of the different engineering requirements and manufacturing constraints. Nevertheless, the necessity of new or dedicated CAD-CAE approaches arises to manage the domains of multiscale modeling. These are some of the advantages and disadvantages that may arise while approaching the design of a component using lattice structures. The aim of this paper is to provide an overview that integrates the most recent applications of lattice structures with their related design and manufacturing issues so that, from a practical design point of view, any state-of-the-art improvements may be established in respect of the related field of applications. In this article, engineers and researchers may find a practical summary of the capabilities and processes of lattice structures that are currently available from a design and development point of view.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call