Abstract

The development of a software system which can detect and identify the flight calls of migrating birds is reported. The system first produces a spectrogram using a DFT. Calls are detected in the spectrogram using an ad hoc combination of local peak‐finding and a connectedness measure. Attributes are extracted both globally from the call and from a window moved incrementally through the call. Decision trees are then used to determine the bird species. These decision trees are induced from a training set using Quinlan’s C4.5 system [J. R. Quinlan, C4.5: Programs for Machine Learning, Morgan Kauffman (1993)]. The system has been tested on a set of 138 nocturnal flight calls from nine species of birds [W. R. Evans, personal communication]. Some calls are faint, and interfering insect noise is present in others. Tenfold resampling was used to classify the calls unseen. Seventy‐eight percent of calls were identified correctly, 4% incorrectly and 18% were placed in an ‘‘uncertain’’ category. Neural network‐based classifiers are commonly used in this general domain and would likely produce similar accuracy, but use of symbolic machine learning offers two important advantages: Training time is linear in the number of examples and the resulting classifier is less opaque. Both significantly ease classifier construction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.