Abstract

In the study, actual solar radiation measurements were used to determine the solar heat gains that affect the daily heating and cooling requirements. The study investigated the advantages of the PureTerm 23 PCM in indoor temperature control using data from the 2021-2022 solar radiation records. The results show that the PCM is inefficient in meeting the heating demands in January and February. In March, it was found that the PCM can save energy by meeting 16% of the daily heating demand. In April, a 57% reduction in heating demand is achieved with PCM and in May it can provide full heating and cooling with solar gains. With the use of PCM, the cooling requirement can be reduced by 69%, 56% and 59% in June, July and August, respectively. In September, it is calculated that heating and cooling needs can be eliminated by storing solar energy gains. In October and November, the heating demand can be reduced by 49% and 3% respectively, while in December there is not enough solar gain for PCM storage. PureTerm 23 PCM shows significant potential for seasonal energy storage supporting sustainable energy management for indoor temperature control.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.