Abstract

Reactions of bipyridyl-functionalized imidazole-thiones and selones with MeX (X = I, OTf) afforded sulfenyl and selenenyl cations [(NNC)EMe]X (2/3, E = S, Se). Further reactions of these main-group cations with [Cu(CH3CN)4]BF4, Cu(OTf) furnished dicationic [{Cu(µ-I)(NNC)EMe}2][Y]2 (5/6, Y = BF4, OTf) and tricationic copper(I) complexes [Cu{(NNC)EMe}2](OTf)2BF4 (7a/7b) when employed [(NNC)EMe]I and [(NNC)EMe]OTf respectively. All these cationic complexes were characterized by various spectroscopic techniques, including X-ray diffraction analysis. The solid-state structures revealed novel bonding modes of the cations. The cationic nature of new complexes was analyzed by the 77Se NMR spectroscopy, which indicated different electronic environments around the selenium centers. The cations [(NNC)EMe]X (X= I, OTf), and (NNC)SMe bearing copper complex [{Cu(µ-I)(NNC)EMe}2][Y]2 proved as potential candidates for alkylation of various Lewis bases and as molecular catalyst in aldehyde-alkyne-amine coupling reactions, respectively. The latter catalytic reactions yielded a range of three-component products in good to excellent yields with low catalyst loading under solvent-free conditions, which demonstrate the potential utility of group-16 cations as ancillary ligands in homogeneous catalysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.