Abstract
Computational approaches for predicting protein-protein interfaces are extremely useful for understanding and modelling the quaternary structure of protein assemblies. In particular, partner-specific binding site prediction methods allow delineating the specific residues that compose the interface of protein complexes. In recent years, new machine learning and other algorithmic approaches have been proposed to solve this problem. However, little effort has been made in finding better training datasets to improve the performance of these methods. With the aim of vindicating the importance of the training set compilation procedure, in this work we present BIPSPI+, a new version of our original server trained on carefully curated datasets that outperforms our original predictor. We show how prediction performance can be improved by selecting specific datasets that better describe particular types of protein interactions and interfaces (e.g. homo/hetero). In addition, our upgraded web server offers a new set of functionalities such as the sequence-structure prediction mode, hetero- or homo-complex specialization and the guided docking tool that allows to compute 3D quaternary structure poses using the predicted interfaces. BIPSPI+ is freely available at https://bipspi.cnb.csic.es.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.