Abstract

The Seebeck coefficient (S) of a serially coupled quantum dot (SCQD) junction system is theoretically studied via a two-level Anderson model. A change of sign in S with respect to temperature is found, which arises from the competition between tunneling currents due to electrons and holes (i.e., bipolar tunneling effect). The change of sign in S implies that one can vary the equilibrium temperature to produce thermoelectric current in either the forward or reverse direction, leading to a bipolar thermoelectric effect. For the case of two parallel SCQDs, we also observe the oscillatory behavior of S with respect to temperature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call