Abstract

We report the experimental investigation of bipolar resistive switching with “table with legs” shaped hysteresis switching loops in epitaxial perovskite GdBaCo2O5+δ/LaNiO3 bilayers deposited by pulsed laser deposition. The possibility of varying the resistivity of GdBaCo2O5+δ by changing its oxygen content allowed engineering this perovskite heterostructure with controlled interfaces creating two symmetric junctions. It has been proved that the resistance state of the device can be reproducibly varied by both continuous voltage sweeps and by electrical pulses. The symmetric devices show slightly non-symmetric resistance profiles, which can be explained by a valence change resistive switching model, and presented promising multilevel properties required for novel memories and neuromorphic computing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.