Abstract
The bipolar resistive switching behaviors of ZnO films grown at various temperatures by metalorganic chemical vapor deposition have been investigated. The ZnO films were grown on Pt/Ti/SiO2/Si(100) substrate, and the ZnO growth temperature was varied from 300°C to 500°C in steps of 100°C. Rutherford backscattering spectroscopy analysis results showed that the chemical compositions of the ZnO films were oxygen-poor Zn1O0.9 at 300°C, stoichiometric Zn1O1 at 400°C, and oxygen-rich Zn1O1.3 at 500°C. Resistive switching properties were observed in the ZnO films grown at 300°C and 400°C. In contrast, high current, without switching properties, was found in the ZnO film grown at 500°C. The ZnO film grown at 500°C had higher concentration of both nonlattice oxygen (4.95%) and oxygen vacancy (3.23%) than those grown at 300°C or 400°C. The resistive switching behaviors of ZnO films are related to the ZnO growth temperature via the relative amount of oxygen vacancies in the film. Pt/ZnO/Pt devices showed asymmetric resistive switching with narrow dispersion of switching voltage.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.