Abstract
In recent years, vessel sealing has become a well-established method in surgical practice for sealing and transecting vessels. Since this technology depends on the fusion of collagen fibers abundantly present in the intestinal wall, it should also be possible to create intestinal anastomoses by thermofusion. Bipolar radiofrequency-induced thermofusion of intestinal tissue may replace traditionally used staples or sutures in the future. The aim of this study was to evaluate the feasibility of fusing intestinal tissue ex vivo by bipolar radiofrequency-induced thermofusion. An experimental setup for temperature-controlled bipolar radiofrequency-induced thermofusion of porcine (n = 30) and rat (n = 18) intestinal tissue was developed. Colon samples were harvested and then anastomosed, altering compressive pressure to examine its influence on anastomotic bursting pressure during radiofrequency-induced anastomotic fusion. For comparison, mechanical stapler anastomoses of porcine colonic samples and conventional suturing of rat colonic samples identical to those used for fusion experiments were prepared, and burst pressure was measured. All thermofused colonic anastomoses were primarily tight and leakage proof. For porcine colonic samples, an optimal interval of compressive pressure (1,125mN/mm(2)) with respect to a high amount of burst pressure (41mmHg) was detected. The mean bursting pressure for mechanical stapler anastomosis was 60.7mmHg and did not differ from the thermofusion (p = 0.15). Furthermore, the mean bursting pressure for thermofusion of rat colonic samples was up to 69.5mmHg for a compressive pressure of 140mN/mm(2). These results confirm the feasibility to create experimental intestinal anastomoses using bipolar radiofrequency-induced thermofusion. The stability of the induced thermofusion showed no differences when compared to that of conventional anastomoses. Bipolar radiofrequency-induced thermofusion of intestinal tissue represents an innovative approach for achieving gastrointestinal anastomoses.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.