Abstract

A bipolar plate is designed to have high electric conductivity, low corrosion and good mechanical strength characteristics. The two most common materials adopted for bipolar plates are carbon and metal. The carbon bipolar plate has good electric conductivity and corrosion resistance but brittle. The metal bipolar plate has good mechanical strength, acceptable electrical conductivity but worse corrosion resistance. The main objective of this paper is to design and fabricate graphite composite laminate based PEMFC bipolar plate. A thermoset type phenolic resin is adopted as the matrix with a plain weave type woven graphite fiber cloth adopted as the composite laminate reinforcement. In the fabrication process, thermoset phenol-formaldehyde resin is first printed onto the plain-weave woven carbon fiber cloth and the waiting until air-dry as prepregs. Several layers of prepregs were then stacked into a mold and heated. The resin contained in the prepregs melted and cured into a composite laminate. The carbonization process is further conducted to increase the electric conductivity. The flow channels are carved and the bipolar plate is completely fabricated. The developed bipolar plates are assembled into a single cell PEMFC and tested. The composite bipolar plate performance with or without carbonization are also studied. The back side bipolar plate electric conductivity would also significantly affect the cell performance. Therefore, increasing the back side conductivity could increase the cell performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call