Abstract

The investigation of dual-mode synaptic plasticity was conducted in thin-film transistors (TFTs) featuring an HfSe2 channel, coupled with an oxygen-deficient (OD)-HfO2 layer structure. In these transistors, the application of negative gate pulses resulted in a notable increase in the post-synaptic current, while positive pulses led to a decrease. This distinctive response can be attributed to the dynamic interplay of charge interactions, significantly influenced by the ferroelectric characteristics of the OD-HfO2 layer. The findings from this study highlight the capability of this particular TFT configuration in closely mirroring the intricate functionalities of biological neurons, paving the way for advancements in bio-inspired computing technologies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call