Abstract

Time series of planktonic foraminiferal δ18O and Ba/Ca-based sea surface salinity (SSS) estimates from the eastern Gulf of Guinea (eastern equatorial Atlantic) indicate changes in runoff that reflect variability of spatially integrated precipitation over the equatorial West African monsoon area. Millennial-scale and recurring runoff-induced SSS rises and declines in the range of 1.5 and 2psu (practical salinity unit) reveal rapid oscillation between dry and wet phases. The timing of decreased runoff coincides with oscillation of Dansgaard–Oeschger stadials and Heinrich events, the most severe monsoon weakening correlating with the latter. δ18Oresidual time series, derived by removing temperature, ice volume, and salinity components from the foraminiferal δ18O record, suggest that weak monsoon precipitation during stadials and Heinrich events was accompanied by significant shifts in δ18Oprecipitation toward higher values. Furthermore, δ18O analysis of individual tests of Globigerinoides ruber pink (δ18Oindiv) during dry episodes show a total range and variance of 2.3‰ and 0.25 (n=121), indicating that seasonal contrast of sea surface freshening was significantly reduced during Heinrich events relative to that of interstadials which show a total range and variance of 3.35‰ and 0.42 (n=140). On the basis of the timing and magnitude of changes in the monsoon record, it is evident that northern high latitude climate was the most dominant control on the West African monsoon variability. However, a southern high latitude imprint is also apparent during some episodes. This centennially resolved climate record demonstrates that the equatorial West African monsoon experienced profound changes in the amount, seasonal contrast, and moisture source of summer monsoon precipitation during the last glacial. The most plausible mechanism is a large-scale southward displacement of the monsoon trough, most likely initiated by large-scale reorganization of atmospheric circulation in response to northern high cooling and southern high latitude warmth.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.