Abstract

To handle the bipolarity in data with fuzzy attributes the properties of bipolar fuzzy set are introduced in the concept lattice theory for precise representation of formal fuzzy concepts and their hierarchical order visualization. In this process, adequate understanding of meaningful pattern existing in bipolar fuzzy concept lattice becomes complex when its size becomes exponential. To resolve this problem, the current paper proposes two methods based on the properties of next neighbors and Euclidean distance with an illustrative example. It is also shown that the proposed method provides similar knowledge extraction when compared to available subset-based method drawing for bipolar fuzzy concept lattice.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.