Abstract

The aim of this study was to identify the bipolar cell types in the retina of a New World monkey, the common marmoset, and compare them with those found in the Old World macaque monkey. Retinal whole-mounts, sections, or both, were stained by using DiI labeling and immunohistochemical methods. Semithin sections were analyzed by using quantitative methods. We show that the same morphologic types of bipolar cell as described for the Old World macaque monkey by Boycott and Wässle (Boycott and Wässle [1991] Eur. J. Neurosci. 3:1069-1088) are present in marmoset retina: two types of midget bipolar cells, six type of diffuse bipolar cells, a blue cone bipolar cell, and one type of rod bipolar cell. The pattern of staining with different immunohistochemical markers ("fingerprint") of each bipolar cell type in marmoset was also the same as described for macaque, with one exception: the flat midget bipolar cell (FMB) class is labeled by antibodies to recoverin in macaque but is labeled by antibodies to CD15 in marmoset. The labeled FMB cells in marmoset make contact with multiple cone photoreceptors throughout most of the extrafoveal retina. The spatial density of bipolar cells in marmoset is shown to be sufficient to support one-to-one connectivity of midget bipolar and ganglion cells in the fovea and to allow for parallel pathways to ganglion cells throughout the retina. Quantitative differences in the morphology and receptor connectivity between marmoset and macaque can be related to differences in cone and rod photoreceptor density between the species. We conclude that bipolar cell diversity is a preserved feature of the primate retina.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call