Abstract
Phosphorescence/fluorescence hybrid white organic light-emitting diodes (OLEDs) are highly appealing for solid-state lighting. One major challenge is how to fully utilize the electrically generated excitons for light output. Herein, an efficient strategy to realize full exciton radiation is successfully revealed by a judicious molecular design and suitable device engineering. A blue host emitter TP-PPI is designed and synthesized, exhibiting a near 100% photoluminescence quantum yield and a high triplet energy level, enabling high-performance blue fluorescence and sensitization of a yellow phosphorescent dopant. Full exciton radiation in hybrid white OLEDs is demonstrated with a single emitting layer formed by doping a yellow phosphor (PO-01) into TP-PPI. Near 100% exciton utilization and state-of-the-art external quantum efficiency of 27.5% are achieved with the high-efficiency blue-emitting host and an electron-trap engineered device architecture.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.