Abstract

In the present report, we compared the insulin secretory responses of freshly isolated, perifused rat and mouse islets to glucose. Prestimulatory glucose levels were changed to assess their influence on the subsequent secretory responses. Additional studies included experiments with the incretin factor glucagon-like peptide-1 (GLP-1), the cholinergic agonist carbachol, and the α2 agonist epinephrine. Our findings demonstrate that under conditions where glucose (8.5-11.1 mmol/L) evokes a dramatic biphasic insulin secretory response from perifused rat islets, mouse islets exhibit little response. Increasing the prestimulatory glucose level to 8.5 mmol/L dramatically distorts subsequently measured glucose-induced insulin secretion from rat islets but allows the evocation of a modest but clear biphasic response from mouse islets in response to 30 mmol/L, but not 11.1 or 16.7 mmol/L, glucose. In the presence of a minimally effective glucose level (10 mmol/L), mouse islets remain exquisitely sensitive to the combined stimulatory effects of GLP-1 (2.5 nmol/L) plus carbachol (0.5 μmol/L) and to the inhibitory influence of epinephrine (10 nmol/L). Short-term culture of rat islets in CMRL 1066 containing 5.6 mmol/L glucose resulted in a significant decrease in the secretory response to 11.1 mmol/L glucose, whereas the same manipulation improved mouse islet responses. It is concluded that the process of collagenase isolating islets does not alter mouse islet sensitivity in any adverse way and that increasing the prestimulatory glucose level can indeed alter the pattern of insulin secretion in either a positive or negative manner depending upon the species being investigated. Prior short-term culture of rodent islets differentially affects secretion from these 2 species.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.