Abstract
We studied the effects of osmotic swelling on the components of excitation-contraction coupling in ventricular myocytes. Myocyte volume rapidly increased 30% in hyposmotic (0.6T) solution and was constant thereafter. Cell shortening transiently increased 31% after 4 min in 0.6T but then decreased to 68% of control after 20 min. In parallel, the L-type Ca(2+) current (I(Ca-L)) transiently increased 10% and then declined to 70% of control. Similar biphasic effects on shortening were observed under current clamp. In contrast, action potential duration was unchanged at 4 min but decreased to 72% of control after 20 min. Ca(2+) transients were measured with fura 2-AM. The emission ratio with excitation at 340 and 380 nm (f(340)/f(380)) decreased by 12% after 3 min in 0.6T, whereas shortening and I(Ca-L) increased at the same time. After 8 min, shortening, I(Ca-L), and the f(340)/f(380) ratio decreased 28, 25, and 59%, respectively. The results suggest that osmotic swelling causes biphasic changes in I(Ca-L) that contribute to its biphasic effects on contraction. In addition, swelling initially appears to reduce the Ca(2+) transient initiated by a given I(Ca-L), and later, both I(Ca-L) and the Ca(2+) transient are inhibited.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: American Journal of Physiology-Heart and Circulatory Physiology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.