Abstract

BackgroundExtracellular ATP may modulate airway responsiveness. Studies on ATP-induced contraction and [Ca2+]i signalling in airway smooth muscle are rather controversial and discrepancies exist regarding both ATP effects and signalling pathways. We compared the effect of extracellular ATP on rat trachea and extrapulmonary bronchi (EPB) and both human and rat intrapulmonary bronchi (IPB), and investigated the implicated signalling pathways.MethodsIsometric contraction was measured on rat trachea, EPB and IPB isolated rings and human IPB isolated rings. [Ca2+]i was monitored fluorimetrically using indo 1 in freshly isolated and cultured tracheal myocytes. Statistical comparisons were done with ANOVA or Student's t tests for quantitative variables and χ2 tests for qualitative variables. Results were considered significant at P < 0.05.ResultsIn rat airways, extracellular ATP (10-6–10-3 M) induced an epithelium-independent and concentration-dependent contraction, which amplitude increased from trachea to IPB. The response was transient and returned to baseline within minutes. Similar responses were obtained with the non-hydrolysable ATP analogous ATP-γ-S. Successive stimulations at 15 min-intervals decreased the contractile response. In human IPB, the contraction was similar to that of rat IPB but the time needed for the return to baseline was longer. In isolated myocytes, ATP induced a concentration-dependent [Ca2+]i response. The contractile response was not reduced by thapsigargin and RB2, a P2Y receptor inhibitor, except in rat and human IPB. By contrast, removal of external Ca2+, external Na+ and treatment with D600 decreased the ATP-induced response. The contraction induced by α-β-methylene ATP, a P2X agonist, was similar to that induced by ATP, except in IPB where it was lower. Indomethacin and H-89, a PKA inhibitor, delayed the return to baseline in extrapulmonary airways.ConclusionExtracellular ATP induces a transient contractile response in human and rat airways, mainly due to P2X receptors and extracellular Ca2+ influx in addition with, in IPB, P2Y receptors stimulation and Ca2+ release from intracellular Ca2+ stores. Extracellular Ca2+ influx occurs through L-type voltage-dependent channels activated by external Na+ entrance through P2X receptors. The transience of the response cannot be attributed to ATP degradation but to purinoceptor desensitization and, in extrapulmonary airways, prostaglandin-dependent PKA activation.

Highlights

  • IntroductionWe compared the effect of extracellular ATP on rat trachea and extrapulmonary bronchi (EPB) and both human and rat intrapulmonary bronchi (IPB), and investigated the implicated signalling pathways

  • Results obtained in airways with different calibres suggest that it may act differentially along the airway tree, we compared the effect of ATP in rat trachea, extrapulmonary bronchi (EPB) and intrapulmonary bronchi (IPB) and, in human IPB

  • We have shown that ATP has a transient contractile effect on human and rat airways, depending on the location along the airway tree

Read more

Summary

Introduction

We compared the effect of extracellular ATP on rat trachea and extrapulmonary bronchi (EPB) and both human and rat intrapulmonary bronchi (IPB), and investigated the implicated signalling pathways. ATP is an extracellular messenger released by different cells that modulate lung functioning. ATP acts on airway smooth muscle (ASM) cells, inducing ASM cell proliferation [7] and changes in airway contractility [8]. Results obtained in airways with different calibres suggest that it may act differentially along the airway tree, we compared the effect of ATP in rat trachea, extrapulmonary bronchi (EPB) and intrapulmonary bronchi (IPB) and, in human IPB. We have investigated whether ATP modulation of airway reactivity was due to an indirect or direct action on airway smooth muscle cells. We have determined the pharmacological profile of the receptors involved in the ATP-induced response and the subsequent intracellular pathways, and, we have assessed the implication of enzymatic ATP degradation in the response pattern to purinergic stimulation

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call