Abstract

An understanding of the local changes in cerebral oxygen content accompanying functional brain activation is critical for making a valid signal interpretation of hemodynamic-based functional brain imaging. However, spatiotemporal relations between changes in tissue partial pressure of oxygen (Po2) and induced neural activity remain incompletely understood. To characterize the local Po2 response to the given neural activity, the authors simultaneously measured tissue Po2 and neural activity in the identical region of guinea pig auditory cortex with an oxygen microelectrode (tip < 10 microm) and optical recording with voltage-sensitive dye (RH 795). In addition, a laser displacement gauge and a laser-Doppler flowmeter were used to monitor the spatial displacement and regional cerebral blood flow, respectively, in the Po2 measurement region. In the activated region, tissue Po2 initially decreased during the approximately 3-seconds after the onset of acoustic stimuli, and then increased during the next approximately 5 seconds. Such biphasic changes are consistently found in cortical layers I to IV. In addition, amplitude of the biphasic change was closely related to detected peak height of the optical signal changes. The results suggest that the initial decrease in tissue Po2 is coupled to the induced neural activity and depends on response time of local increase in cerebral blood flow.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.