Abstract

Many complex cellular processes from mitosis to cell motility depend on the ability of the cytoskeleton to generate force. Force-generating systems that act on elastic cytoskeletal elements are prone to oscillating instabilities. In this work, we have measured spontaneous shape and movement oscillations in motile fish epithelial keratocytes. In persistently polarized, fan-shaped cells, retraction of the trailing edge on one side of the cell body is out of phase with retraction on the other side, resulting in periodic lateral oscillation of the cell body. We present a physical description of keratocyte oscillation in which periodic retraction of the trailing edge is the result of elastic coupling with the leading edge. Consistent with the predictions of this model, the observed frequency of oscillation correlates with cell speed. In addition, decreasing the strength of adhesion to the substrate reduces the elastic force required for retraction, causing cells to oscillate with higher frequency at relatively lower speeds. These results demonstrate that simple elastic coupling between movement at the front of the cell and movement at the rear can generate large-scale mechanical integration of cell behavior.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.