Abstract

This paper discusses a dynamic nonprehensile manipulation of a thin deformable object and its rotational behavior similarity to bipedal gaits toward an effective rotation. A rigid plate end-effector at the tip of a high-speed manipulator can remotely manipulate an object without grasping it. We make use of a simulation model in order to approximate the dynamic characteristics of a thin deformable object on a plate. In this simulation model, we used the parameters estimated from a slice of cheese, as a sample of a real deformable object. Through simulation analysis we show how the object changes its rotational behavior with an analogy to the motion of bipedal gaits sliding, walking, and running. We investigate how the friction between the plate and the object influences the object's angular velocity. We show that an optimum friction point exists and that it is determined based on the object's rotational behavior.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.