Abstract

Principal mechanisms of passive dynamic walking are studied from the mechanical energy point of view, and novel gait generation and control methods based on passive dynamic walking are proposed. First, a unified property of passive dynamic walking is derived, which shows that the walking system's mechanical energy increases proportionally with respect to the position of the system's center of mass. This yields an interesting indeterminate equation that determines the relation between the system's control torques and its center of mass. By solving this indeterminate equation for the control torque, active dynamic walking on a level can then be realized. In addition, the applications to the robust energy referenced control are discussed. The effectiveness and control performances of the proposed methods have been investigated through numerical simulations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call