Abstract
We introduce an SU(M)-symmetric disordered bipartite spin model with unusual characteristics. Although superficially similar to the Sachdev-Ye (SY) model, it has several markedly different properties for M≥3. In particular, it has a large nontrivial nullspace whose dimension grows exponentially with system size. The states in this nullspace are frustration-free and are ground states when the interactions are ferromagnetic. The exponential growth of the nullspace leads to Hilbert-space fragmentation and a violation of the eigenstate thermalization hypothesis. We demonstrate that the commutant algebra responsible for this fragmentation is a nontrivial subalgebra of the Read-Saleur commutant algebra of certain nearest-neighbor models such as the spin-1 biquadratic spin chain. We also discuss the low-energy behavior of correlations for the disordered version of this model in the limit of a large number of spins and large M, using techniques similar to those applied to the SY model. We conclude by generalizing the Shiraishi-Mori embedding formalism to nonlocal models, and apply it to turn some of our nullspace states into quantum many-body scars. Published by the American Physical Society 2024
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.