Abstract

This paper proposes a new modular multiplication method that uses Montgomery residues defined by a modulus M and a Montgomery radix R whose value is less than the modulus M. This condition enables the operand multiplier to be split into two parts that can be processed separately in parallel - increasing the calculation speed. The upper part of the split multiplier can be processed by calculating a product modulo M of the multiplicand and this part of the split multiplier. The lower part of the split multiplier can be processed by calculating a product modulo M of the multiplicand, this part of the split multiplier, and the inverse of a constant R. Two different implementations based on this method are proposed: One uses a classical modular multiplier and a Montgomery multiplier and the other generates partial products for each part of the split multiplier separately, which are added and accumulated in a single pipelined unit. A radix-4 version of a multiplier based on a radix-4 classical modular multiplier and a radix-4 Montgomery multiplier has been designed and simulated. The proposed method is also suitable for software implementation in a multiprocessor environment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.