Abstract
BackgroundQuantitative studies of the variation of disparity during ontogeny exhibited by the radiation of coral reef fishes are lacking. Such studies dealing with the variation of disparity, i.e. the diversity of organic form, over ontogeny could be a first step in detecting evolutionary mechanisms in these fishes. The damselfishes (Pomacentridae) have a bipartite life-cycle, as do the majority of demersal coral reef fishes. During their pelagic dispersion phase, all larvae feed on planktonic prey. On the other hand, juveniles and adults associated with the coral reef environment show a higher diversity of diets. Using geometric morphometrics, we study the ontogenetic dynamic of shape disparity of different head skeletal units (neurocranium, suspensorium and opercle, mandible and premaxilla) in this fish family. We expected that larvae of different species might be relatively similar in shapes. Alternatively, specialization may become notable even in the juvenile and adult phase.ResultsThe disparity levels increase significantly throughout ontogeny for each skeletal unit. At settlement, all larval shapes are already species-specific. Damselfishes show high levels of ontogenetic allometry during their post-settlement growth. The divergence of allometric patterns largely explains the changes in patterns and levels of shape disparity over ontogeny. The rate of shape change and the length of ontogenetic trajectories seem to be less variable among species. We also show that the high levels of shape disparity at the adult stage are correlated to a higher level of ecological and functional diversity in this stage.ConclusionDiversification throughout ontogeny of damselfishes results from the interaction among several developmental novelties enhancing disparity. The bipartite life-cycle of damselfishes exemplifies a case where the variation of environmental factors, i.e. the transition from the more homogeneous oceanic environment to the coral reef offering a wide range of feeding habits, promotes increasing shape disparity of the head skeleton over the ontogeny of fishes.
Highlights
Quantitative studies of the variation of disparity during ontogeny exhibited by the radiation of coral reef fishes are lacking
The majority of coral reef fishes have a complex life-cycle with two distinct phases: (1) a dispersive pelagic larval phase and (2) a sedentary demersal adult phase associated with the coral reef environment
Shape variation in each skeletal unit is significantly correlated with logtransformed size and a large proportion of variation in total shape change during damselfish post-settlement development is explained by ontogenetic allometries
Summary
Quantitative studies of the variation of disparity during ontogeny exhibited by the radiation of coral reef fishes are lacking. It is surprising that quantitative studies on the ontogeny of the radiation of coral reef fishes are lacking Such studies dealing with the variation of disparity, i.e. the diversity of organic form [15], over the ontogeny could be a first step in detection of evolutionary mechanisms of diversification in these fishes. By studying their ontogeny, via changes in shape with size (i.e. allometry), it is possible to gain a clearer understanding of the timing of selective pressures in coral reef fishes [1]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.