Abstract

Detector grade Cd0.9Zn0.1Te (CZT) single crystals were grown from zone refined Cd, Zn, and Te (∼7 N) precursor materials, using a tellurium solvent method. Detectors with virtual Frisch grid configuration were fabricated using these crystals. I-V measurements revealed low leakage currents at room-temperature, ∼11 nA for one such detector D1 and ∼8 nA for another detector D2 at 1100 V. The spectroscopic performances of the two CZT virtual Frisch grid detectors have been evaluated and compared for high energy gamma ray detection. Detector D1 showed a well-resolved pulse-height spectrum with an energy resolution of ∼1.6% for the 662 keV gamma rays. Detector D2 also showed a distinct 662 keV peak but with a broader pulse-height distribution. A digital biparametric correlation study of the depth of interaction and energy deposited by the 662 keV gamma rays was carried out. A different kind of correlation pattern from that observed normally for hole trapping was noticed in the case of detector D2. Correlation of results from thermally stimulated current measurement studies suggested that the anomalous biparametric correlation pattern was due to the trapping of holes but modified by the virtual Frisch grid effect. The results also suggested that the effect of electron trapping could not be ruled out either. Finally, a digital correction scheme was applied to recover the 137Cs spectrum from the effect of charge loss.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call