Abstract

Heteroatoms doped porous carbon as anode for sodium ion batteries have been successfully prepared from the bio-waste through a three-step process involving carbonization, activation and doping. The as-prepared nitrogen and sulfur-doped tangerine peel-derived porous carbon delivers a discharge capacity of 377 mAh g1 after 100 cycles at a current density of 50 mA g1 and long-term cycling stability at a current density of 500 mA g1 for 2000 cycles. The interconnected porous structure together with heteroatoms doping enhances the electrochemical storage properties of nitrogen and sulfur-doped tangerine peel-derived porous carbon. Furthermore, a full-cell SIB configuration employing nitrogen and sulfur-doped tangerine peel-derived porous carbon in combination with the Na3V2(PO4)3-C cathode successfully retained 95% of the discharge capacity after 50 cycles. These findings suggest the capability of similar types of biowaste-derived carbonaceous materials with heteroatoms-doping for future large-scale energy storage applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.