Abstract

A food traceability system (FTS) can record information about processes along a production chain to determine their safety and quality. Under the Internet of Things (IoT) concept, the communication technologies that support FTSs act as platforms for mass access to information with limited security. However, the integrity of the collected data is not immune to security attacks. This paper proposes a point-to-point information transmission path with no edges or access boundaries (no intermediaries) to transmit data with integrity. This route is possible thanks to the architectural articulation of a hardware device (sensor BIoTS) at the perception layer, with the Blockchain architecture at the application layer. This pairing makes an ecosystem with the ability to trace and certify in parallel the products, the supply chain processes, and the data recorded in it possible. The design of the security testing ecosystem is based on the theoretical and technical principles of cybersecurity. It is executed through mathematical models that define the probability of attacks’ success against the transmitted data’s integrity. The security tests performed allow for establishing that this BIoTS information transmission route is unlikely to suffer from transmission vulnerabilities and that it is not prone to security attacks against integrity. This work paves the way toward fully integrating Blockchain technology in dedicated IoT architectures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call