Abstract

Short carbon fiber (SCF) reinforced polymer composites are expected to possess outstanding biotribological and mechanical properties in certain direction, while the non-oriented SCF weakens its reinforcing effect in the matrix. In this work, high-oriented SCF was achieved during nozzle extrusion, and then SCF reinforced polyether-ether-ketone (PEEK) composites were fabricated by fused deposition modeling (FDM). The concrete orientation process of SCF was theoretically simulated, and significant shear stress difference was generated at both ends of SCF. As a result, the SCF was distributed in the matrix in a hierarchical structure, containing surface layer I, II and core layer. Moreover, the SCF was oriented highly along the printing direction and demonstrated a more competitive orientation distribution compared to other studies. The SCF/PEEK composites showed a considerable improvement in wear resistance by 44 % due to self-lubricating and load-bearing capability of SCF. Besides, it demonstrated enhancements in Brinell hardness, compressive and impact strength by 48.52 %, 16.42 % and 53.64 %, respectively. In addition, SCF/PEEK composites also showed good cytocompatibility. The findings gained herein are useful for developing the high-oriented SCF reinforced polymer composites with superior biotribological and mechanical properties for artificial joints.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.