Abstract

Purpose The purposes of this paper are to investigate the biotribological behaviour of Vitamin E-blended highly cross-linked ultra-high molecular weight polyethylene (HXL-UHMWPE) under multi-directional motion by using a CUMT II artificial joint hip simulator and compare it with HXL-UHMWPE and conventional UHMWPE. Design/methodology/approach The biotribological behaviour of conventional, highly cross-linked and Vitamin E-blended highly cross-linked UHMWPE acetabular cups counterfaced with CoCrMo alloy femoral head under multi-directional motion were investigated by using CUMT-II artificial hip joint simulator for one-million walking cycles. The test environment was at 36.5 ± 0.5°C and 25 per cent bovine serum was used as lubricant. A Paul cycle load with a peak of 784 N was applied; the motion and loading were synchronized at 1 Hz. Findings The wear resistance of Vitamin E-blended highly cross-linked UHMWPE was significantly higher than that of highly cross-linked and conventional UHMWPE. The wear marks observed from the worn surface of UHMWPE were multi-directional, with no dominant wear direction. Only abrasion occurred on the surface of Vitamin E-blended highly cross-linked UHMWPE, while yielding and accumulated plastic flow processes occurred on the surface of conventional UHMWPE and flaking-like facture and abrasion occurred on the surface of highly cross-linked UHMWPE. Originality/value Besides the prevention of oxidative degradation, blending with Vitamin E can also reduce the incidence of fatigue crack occurred in the surface layer of HXL-UHMWPE samples. Therefore, the wear resistance of HXL-UHMWPE under multi-directional motion can be further enhanced by blending with Vitamin E.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.