Abstract

The objective of this work was to determine the ability of a pilot-scale hybrid system to treat real (non-synthetic) winery wastewater. The experimental treatment system consisted of two stages: An attached growth pilot-scale bioreactor (biological trickling filter with plastic support material) was initially used to remove a significant amount of dissolved chemical oxygen demand (d-COD) from winery wastewater, and then a pilot-scale, horizontal subsurface flow constructed wetland (CW) was examined as a post-treatment step for further d-COD removal. Results from the biofilter revealed that the recirculation rate of 1.0 L/min lead to higher d-COD removal rates than that of 0.5 L/min for all feed d-COD concentrations tested (3500, 7500, 9000 and 18,000 mg d-COD/L). Experiments in the CW were performed using feed d-COD concentrations of about 1500 mg/L (equivalent to biofilter effluent when initial filter feed d-COD concentrations are 18,000 mg/L). The wetland polishing stage managed to further remove d-COD and produced effluent concentrations below current legislation limits for safe disposal. Furthermore, the presence of zeolite in CW (one third of the length of CW) enhanced ammonium removal. The experimental results indicate that the combination of a biological trickling filter and a constructed wetland could effectively treat effluents originating from small wineries typical of the Mediterranean region.

Highlights

  • Agro-industries are major contributors to the worldwide industrial pollution problem, since they produce large quantities of wastewater that are very often left untreated and eventually end up in the environment

  • The objective of this study was to examine the efficiency of a hybrid system comprising a biological trickling filter and a horizontal subsurface flow (HSF)-constructed wetland to treat real winery wastewater originating from a local winery

  • A series of operating cycles was performed until the system reached a constant, efficient performance and recorded a maximum degradation rate of dissolved chemical oxygen demand (d-Chemical Oxygen Demand (COD)) for at least three cycles

Read more

Summary

Introduction

Agro-industries are major contributors to the worldwide industrial pollution problem, since they produce large quantities of wastewater that are very often left untreated and eventually end up in the environment. Among these agro-industries, wineries are important pillars of the local economy in Mediterranean countries, including Greece [1]. The amount and complexity of wastes generated by wineries and the management of these wastes is very problematic [2,3] Most of these wineries are usually small-sized, scattered throughout the country, and produce byproducts and wastes seasonally. Wine production generates large quantities of wastewater that originate from grape processing and washing

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.