Abstract
[1] We derive the equations of motion of a double-porosity medium based on Biot's theory of poroelasticity and on a generalization of Rayleigh's theory of fluid collapse to the porous case. Spherical inclusions are imbedded in an unbounded host medium having different porosity, permeability, and compressibility. Wave propagation induces local fluid flow between the inclusions and the host medium because of their dissimilar compressibilities. Following Biot's approach, Lagrange's equations are obtained on the basis of the strain and kinetic energies. In particular, the kinetic energy and the dissipation function associated with the local fluid flow motion are described by a generalization of Rayleigh's theory of liquid collapse of a spherical cavity. We obtain explicit expressions of the six stiffnesses and five density coefficients involved in the equations of motion by performing “gedanken” experiments. A plane wave analysis yields four wave modes, namely, the fast P and S waves and two slow P waves. As an example, we consider a sandstone and compute the phase velocity and quality factor as a function of frequency, which illustrate the effects of the mesoscopic loss mechanism due to wave-induced fluid flow.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.