Abstract

Advancements in wireless sensor networks (WSN) technology and miniaturization of wearable sensors have enabled long-term continuous pervasive biomedical signal monitoring. Wrist-worn photoplethysmography (PPG) sensors have gained popularity given their form factor. However the signal quality suffers due to motion artifacts when used in ambulatory settings, making vital parameter estimation a challenging task. In this paper, we present a novel deep learning framework, BioTranslator, for computing the instantaneous heart rate (IHR), using wrist-worn PPG signals collected during physical activity. Using one-dimensional Convolution-Deconvolution Network, we translate a single channel PPG signal to an electrocardiogram(ECG)-like time series signal, from which relevant R-peak information can be inferred enabling IHR measures. The proposed network configuration was evaluated on 12 subjects of the TROIKA dataset, involved in physical activity. The proposed network identifies 92.8% of R-peaks, besides achieving a mean absolute error of 51±6.3ms with respect to reference ECG-derived IHR.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.