Abstract
Ginsenoside Rb1 is the most abundant ginsenoside in Panax (ginseng). The hydrolysis of this ginsenoside produces compound K, the biologically active ginsenoside of ginseng. We previously identified a fungus Paecilomyces Bainier sp. 229 (sp. 229), which can efficiently convert ginsenoside Rb1 to compound K. In this report, the ginsenoside hydrolyzing β-glucosidases were isolated from sp. 229 and the pathway of the biotransformation of ginsenoside Rb1 to compound K by sp. 229 was investigated. Based on reverse-phase HPLC and TLC analysis, we found the main metabolic pathway is as follows: ginsenoside Rb1 → ginsenoside Rd → ginsenoside F2 → compound K. Moreover, the results showed that there were other metabolic pathways: ginsenoside Rb1 → ginsenoside XVII → ginsenoside F2 → compound K and ginsenoside Rb1 → ginsenoside Rg3 → ginsenoside Rh2. These processes would allow the specific bioconversion of ginsenoside Rb1 to various ginsenosides using an appropriate combination of specific microbial enzymes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.