Abstract

The biotransformation of sulfamonomethoxine (SMM) was studied in an aerobic granular sludge (AGS) system to understand the role of sorption by microbial cells and extracellular polymeric substances (EPS) and the role of functional microbe/enzyme biodegradation. Biodegradation played a more important role than adsorption, while microbial cells covered with tightly bound EPS (TB-EPS) showed higher adsorption capacity than microbial cells themselves or microbial cells covered with both loosely bound EPS (LB-EPS) and TB-EPS. The binding tests between EPS and SMM and the spectroscopic analyses (3D-EEM, UV–Vis, and FTIR) were performed to obtain more information about the adsorption process. The data showed that SMM could interact with EPS by combining with aromatic protein compounds, fulvic acid-like substances, protein amide II, and nucleic acids. Batch tests with various substances showed that SMM removal rates were in an order of NH2OH (60.43 ± 2.21 μg/g SS) > NH4Cl (52.96 ± 0.30 μg/g SS) > NaNO3 (31.88 ± 1.20 μg/g SS) > NaNO2 (21.80 ± 0.42 μg/g SS). Hydroxylamine and hydroxylamine oxidoreductase (HAO) favored SMM biotransformation and the hydroxylamine-mediated biotransformation of SMM was more effective than others. In addition, both ammonia monooxygenase (AMO) and CYP450 were able to co-metabolize SMM. Analysis of UPLC-QTOF-MS indicated the biotransformation mechanisms, revealing that acetylation of arylamine, glucuronidation of sulfonamide, deamination, SO2 extrusion, and δ cleavage were the five major transformation pathways. The detection of TP202 in the hydroxylamine-fed Group C indicated a new biotransformation pathway through HAO. This study contributes to a better understanding of the biotransformation of SMM.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.