Abstract

A bioconversion system for medium-chain alkanes was constructed by using a recombinant Escherichia coli whole-cell biocatalyst expressing P450 monooxygenase genes, ferredoxin, and ferredoxin reductase cloned from Alcanivorax borkumensis as an operon. The recombinant E. coli harboring the P450 gene and two related expression component enzymes, ferredoxin and ferredoxin reductase, was constructed in a single vector pET21(a) and successfully expressed in E. coli BL21(DE3) as a soluble form, showing a molecular weight of 53 kDa on 10% SDS-PAGE. When the cell-free extract of E. coli BL21 expressing p450 monooxygenase was subjected to reduced CO difference spectral analysis, a soret band near 450 nm appeared indicating that the cloned P450 was expressed as a functionally active enzyme. The E. coli cells harboring the expressed P450 gene were able to convert n-octane and 1-decene, producing approximately 450 μg/ml of n-octanol and 290 μg/ml of 1,2-epoxydecane, respectively, at pH 7.0 and 30 °C. However, the recombinant E. coli cells were not able to convert the branched alkane, 2,6,10,14-tetramethylpentadecane (C19).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call