Abstract
Bacterial evolution has resulted in the appearance of several Sphingomonadacea strains that gained the ability to metabolize hexachlorocyclohexanes (HCHs). HCHs have been widely used as pesticides but were banned under the Stockholm Convention on persistent organic pollutants (POPs) in 2009. Here we present evidence for bacterial transformation reactions of hexabromocyclododecanes (HBCDs), which are structurally related to HCHs. HBCDs were used as flame retardants. They are now also considered as POPs and their production and use is restricted since 2013. Racemic α-, β-, and γ-HBCDs and their mixture were exposed to Sphingobium chinhatense IP26 in resting cell assays in parallel to β-HCH. All HBCD stereoisomers were converted with (−)β-HBCD being the best and both α-HBCD enantiomers the poorest substrates. HBCD conversion rates were 27–430 times slower than that of β-HCH. Three generations of hydroxylated transformation products were observed, 7 pentabromocyclododecanol isomers (PeBCD-ols), 11 tetrabromocyclododecadiols (TeBCD-diols) and 3 tribromocyclododecatriols (TrBCD-triols). The conversion of (+)α-, (−)β- and (−)γ-HBCD was faster than those of their enantiomers. Therefore the respective enantiomeric excess increased to 3 ± 1%, 36 ± 1% and 6 ± 2% during 48 h of bacterial exposure. PeBCD-ols appeared first, followed by TeBCD-diols and TrBCD-triols indicating stepwise hydrolytic dehalogenation reactions. In conclusion, severe HCH pollution at geographically distinct dumpsites triggered bacterial evolution to express enzymes transforming such compounds. We used S. chinhatense IP26 bacteria to transform structurally related HBCDs, also regulated under the Stockholm Convention. Such bacteria might be useful for bioremediation but the toxicity of the numerous transformation products observed must be assessed in advance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.