Abstract

Biological recycling of PET waste has been extensively investigated recently to tackle plastic waste pollution, and ethylene glycol (EG) is one of the main building blocks recovered from this process. Wild-type Yarrowia lipolytica IMUFRJ 50682 can be used as biocatalyst for this purpose. Herein, we report its ability to perform oxidative biotransformation of EG into glycolic acid (GA): a higher value-added chemical with varied industrial applications. Maximum non-inhibitory concentration assay for EG cytotoxicity revealed that this yeast tolerates high concentrations (up to 2 M). Whole-cell biotransformation assays using resting yeast cells showed GA production uncoupled to cell growth metabolism, and 13 C nuclear magnetic resonance (NMR) analysis confirmed GA production. Moreover, higher agitation speed (450 versus 350 rpm) resulted in a 1.12-fold GA production improvement (from 352 to 429.5 mM) during Y. lipolytica cultivation in bioreactors after 72 h. GA was constantly accumulated in the medium, suggesting that this yeast may also share an incomplete oxidation pathway (i.e., it is not metabolized to carbon dioxide) as seen in acetic acid bacterial group. Additional assays using higher chain-length diols (1,3-propanediol, 1,4-butanediol, and 1,6-hexanediol) revealed that C4 and C6 diols were more cytotoxic, suggesting that they underwent different pathways in the cells. We found that this yeast consumed extensively all these diols, however, 13 C NMR analysis from supernatant identified solely the presence of 4-hydroxybutanoic acid from 1,4-butanediol, along with GA from EG oxidation. Findings reported herein reveal a potential route for PET upcycling to a higher value-added product. This article is protected by copyright. All rights reserved.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call