Abstract

Bisphenol A (BPA) is a ubiquitous endocrine disruptor that poses adverse human health risks. Herein, biotransformation kinetics, products, and mechanisms of BPA undergoing a laccase-producing Trametes hirsuta La-7 metabolism were for the first time reported. Strain La-7 could completely biotransform ≤0.5 mmol·L−1 BPA within 6 d in vivo. Notably, its extracellular crude laccase solution (ECLS) and intracellular homogenized mycelium (HM) only required 6 h to convert 85.71% and 84.24% of 0.5 mmol·L−1 BPA in vitro, respectively. The removal of BPA was noticeably hampered by adding a cytochrome P-450 inhibitor (piperonyl butoxide) in HM, disclosing that cytochrome P-450 monooxygenase participated in BPA oxidation and metabolism. BPA intermediates were elaborately identified by high-resolution mass spectrometry (HRMS) combined with 13C stable isotope ratios (BPA: 13C12-BPA = 0.25: 0.25, molar concentration). Based on the accurate molecular mass, isotope labeling difference, and relative intensity ratio of product peaks, 6 versatile metabolic mechanisms of BPA, including polymerization, hydroxylation, dehydration, bond cleavage, dehydrogenation, and carboxylation in vivo and in vitro, were confirmed. Germination index values revealed that inoculating strain La-7 in a BPA-contaminated medium presented no phytotoxicity to the germinated radish (Raphanus sativus L.) seeds. In vivo, Mg2+, Fe2+, Fe3+, and Mn2+ were conducive to BPA removal, but Cd2+ and Hg2+ significantly obstructed BPA elimination. Additionally, strain La-7 also exhibited high-efficiency metabolic ability toward estrone (E1), 17β-estradiol (E2), and 17α-ethinylestradiol (EE2), with more than 96.13%, 96.65%, and 100% of E1, E2, and EE2 having been converted, respectively. Our findings provide an environmentally powerful laccase-producing fungus to decontaminate endocrine disruptor-contaminated water matrices by radical polymerization and oxidative decomposition.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call