Abstract

Biotransformation of α-artemether and dihydroartemisinin (DHA) by Glycyrrhiza glabra (Linn.), Lavandula officinalis (L.), and Panax quinquefolium was investigated. Two metabolites: tetrahydrofuran derivative (3) and a 13-carbon ring-rearranged product (4) were produced from α-artemether (1). DHA (2) provided metabolite 4. The structure of the metabolites were characterized by proton (1H) and carbon (13C) nuclear magnetic resonance (NMR) imaging, fourier transform infrared spectroscopy, and mass spectroscopy. This is the first report that G. glabra and L. officinalis have the capability to biotransform α-artemether, and P. quinquefolium to biotransform DHA. Metabolite 3 is a new compound and metabolite 4 is reported here for the first time from artemisinin derivatives 1 and 2. The presence of acetate function in the derivative 3 and hydroxyl and C-12 deoxo groups in 4 obtained in our study make them interesting synthones for further modification into new clinically potent molecules.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.