Abstract

The consumption of fish and shellfish is a major route of human exposure to arsenic (As), because they contain relatively large concentrations of organoarsenicals, in particular arsenobetaine (AB). AB is considered non-toxic because of its rapid excretion from the human body. However, previous studies on human metabolism and excretion of AB have used the compound in solution rather than considering the effects that occur during the digestion of food in the gastrointestinal tract. In this preliminary study, we used microcosms inoculated with human faecal matter to investigate the aerobic and anaerobic degradation of AB by microorganisms associated with the large intestine. Samples were recovered over 30 days, centrifuged, filtered and the supernatant analysed for total As content and As speciation, using ICP–MS and HPLC–ICP–MS respectively. After 7 days the total As in the supernatants from the aerobic experiment fell to a minimum of 65% of the total added, recovering to 15% less than added after 30 days. By using anion and cation exchange chromatography coupled to ICP–MS detection, arsenobetaine (AB), dimethylarsinic acid (DMA), dimethylarsinoylacetic acid (DMAA) and trimethylarsine oxide (TMAO) were identified as degradation products. Results from the aerobic system showed that after 7 days incubation the AB had been degraded to DMA, DMAA and TMAO and after 30 days the degraded AB reappeared in the samples. The results for the anaerobic system showed no degradation of AB over the 30 day course of the experiment. These findings demonstrate for the first time that biocatalytic capability for AB degradation exists within the human gastrointestinal tract.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call