Abstract

A highly sensitive glucose oxidase (GOx) electrochemical biosensor for the determination of the biotoxic trace metal ions Hg2+, Cd2+, Pb2+ and CrVI by enzyme inhibition has been developed. GOx was immobilized on a novel sensing platform consisting of poly(brilliant green) films formed by potential cycling electropolymerization in sulfuric acid doped ethaline deep eutectic solvent on multiwalled carbon nanotube modified glassy carbon electrodes. Polymer films produced in this medium presented more uniform morphology and better electrochemical sensing properties than those prepared in aqueous solution. The inhibitor concentration necessary to give 50% inhibition, I50, was used for the determination of the type of reversible inhibition, and the relationship between I50 and the inhibition constant Ki is discussed. The new biosensor was successfully used for the determination of biotoxic trace metal ions with a nanomolar limit of detection, lower than in the literature, very good repeatability, stability and selectivity, and was applied successfully to detection of the toxic trace metal species in milk samples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.