Abstract
Biotite, as a type of associated mineral, is normally applied as a filling material for buildings, or is discarded as tailings. However, as a potassium-bearing phyllosilicate mineral, biotite can be easily weathered by fungi, which leads to its internal potassium being released for agricultural production (1), and the mineral residues being weathered by the fungus may be applied for adsorption of heavy metal ions (2). This work investigates the weathering of biotite by Aspergillus niger through the analysis of the differences in ion dissolution from biotite, producing of organic acids, the change of mineral morphology and composition by inductively coupled plasma optical emission spectrometry (ICP-OES), high-performance liquid chromatography (HPLC), scanning electron microscopy (SEM), and X-ray diffraction (XRD). Besides, the mineral residues were applied for adsorption of heavy metal ions. Results showed that the mycelia envelope the mineral and form fungal–mineral aggregates. The fungus can secrete a variety of organic acids including citric acid and oxalic acid; these attacked the surface and cleavage of biotite to release ions (Al3+, Fe3+, Mg2+, and K+). During incubation with A. niger, biotite weathered as shown by the relative decrease in biotite content and increase in interlayer spacing. Moreover, a certain concentration of phytic acid and tween-80 could promote the release of K+, and the fermentation liquid of rice bran has the same effect. Biotite residues showed a good adsorption for Cd2+, Pb2+, Zn2+, and Cu2+. The results indicate that biotite can be biotransformed and release K+, of which the production can be acted as heavy metal ion adsorbent. It provides a reference for application of biotite in agriculture and control of heavy metal ion pollution in soil.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.