Abstract

Many biosensing and imaging systems use fluorescence detection. We present the synthesis of biotin-end-functionalized highly fluorescent water-soluble polymers for potential use in biotin–avidin systems. Statistical polymers of N-acryloylmorpholine (NAM) and N-acryloxysuccinimide (NAS) were prepared by RAFT polymerization using a biotinylated chain transfer agent that ensured 95% end-functionalization of the chains. They were further labeled with a lucifer yellow (LY) dye, yielding 7 to 62 LY fluorophores per polymer chain. The resulting polymers exhibited reduced fluorescence self-quenching, with 7- to 43-fold higher brightness than free LY dye. In addition, they featured low pH sensitivity and very good photobleaching resistance. Moreover, we showed that a more extended polymer conformation was beneficial to the binding of the terminal biotin with streptavidin. This work paves the way for the development of polymers for signal amplification in biosensing assays, labeling of biotin-receptors at cell surfaces in some cancer studies, labeling of antibodies and microscopy imaging purposes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.