Abstract

Biotic interactions are predicted to have the strongest influence on species assemblages in extreme environments. We therefore test the hypothesis that in abiotically-severe beaches plant–plant interactions, specifically facilitation, are important relative to abiotic conditions. This hypothesis is tested by assessing the influence of dominant vascular plant species on the fine-scale occurrence and richness of vascular and cryptogam species using a unique dataset of boreal beaches along the Finnish Baltic Sea, characterized by strong post-glacial land uplift and large environmental gradients. We studied three different levels of vegetation patterns across a broad geographical scale; individual species, functional groups and the entire community. Results showed that dominant vascular species strongly drive species occurrence and richness in dynamic beach environments, with some species having an influence similar to that of key abiotic variables. In contrast to expectations, facilitative effects did not dominate in these harsh environments. Instead, the outcomes of biotic interactions were species-specific, and also differed between vascular and cryptogam species, with the former group most strongly influenced by a pioneer species and the latter by a late succession generalist. Our study highlights the importance of incorporating biotic interaction effects into models of multiple vegetation properties and cautions against overly simplistic generalizations to describe relatively idiosyncratic interaction effects.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.