Abstract

Understanding the causal mechanisms of past marine deoxygenation is critical to predicting the long-term Earth systems response to climate change. However, the processes and events preceding widespread carbon burial coincident with oceanic anoxic events remain poorly constrained. Here, we report a comprehensive biomarker inventory enveloping Oceanic Anoxic Event 2 that captures microbial communities spanning epipelagic to benthic environments in the southern proto-North Atlantic Ocean. We identify an abrupt, sustained increase in primary productivity that predates Oceanic Anoxic Event 2 by ∼220 ± 4 thousand years, well before other geochemical proxies register biogeochemical perturbations. During the event, recurrent photic zone euxinia triggered a major marine microbial reorganization accompanied by a decrease in primary production. These findings highlight how organic carbon burial drivers operated along a continuum in concert with microbial ecological changes, with antecedent, localized increases in primary production destabilizing carbon cycling and promoting the progressive marine deoxygenation leading to Oceanic Anoxic Event 2.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call