Abstract

In tomato, Verticillium resistance is determined by the Ve gene locus encoding two leucine-rich repeat-receptor-like proteins (Ve1, Ve2). The resistance function usually is attributed to Ve1 alone, with two known alleles: Ve1, encoding a resistance protein, and ve1, with a premature stop codon encoding a truncated product. We have examined further Ve-gene expression in resistant and susceptible near-isolines of Verticillium-infected Craigella tomatoes, using both quantitative RT-PCR and an alternative RFLP assay. Ve1 is induced differentially in resistant and susceptible plants, while Ve2 is constitutively expressed throughout disease development. Contrary to their putative role in Verticillium resistance, these profiles were observed even with compatible Verticillium interactions, some bacterial pathogens, and transgenic tomato plants expressing the fungal Ave1 effector. This suggests broader roles in disease and/or stress. To determine the contribution of plant hormones, abscisic acid, methyl jasmonate, naphthaleneacetic acid or salicylic acid were infused independently via the tomato root and effects on Ve1 induction were confirmed using biosynthesis mutants. While all the hormones modulated Ve1-gene induction, abscisic acid and salicylic acid were not required while jasmonic acid appears to play a more direct role.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call