Abstract

Listeria monocytogenes is a food-borne pathogen responsible for the potentially fatal disease listeriosis and terrestrial ecosystems have been hypothesized to be its natural reservoir. Therefore, identifying the key edaphic factors that influence its survival in soil is critical. We measured the survival of L. monocytogenes in a set of 100 soil samples belonging to the French Soil Quality Monitoring Network. This soil collection is meant to be representative of the pedology and land use of the whole French territory. The population of L. monocytogenes in inoculated microcosms was enumerated by plate count after 7, 14 and 84 days of incubation. Analysis of survival profiles showed that L. monocytogenes was able to survive up to 84 days in 71% of the soils tested, in the other soils (29%) only a short-term survival (up to 7 to 14 days) was observed. Using variance partitioning techniques, we showed that about 65% of the short-term survival ratio of L. monocytogenes in soils was explained by the soil chemical properties, amongst which the basic cation saturation ratio seems to be the main driver. On the other hand, while explaining a lower amount of survival ratio variance (11%), soil texture and especially clay content was the main driver of long-term survival of L. monocytogenes in soils. In order to assess the effect of the endogenous soils microbiota on L. monocytogenes survival, sterilized versus non-sterilized soils microcosms were compared in a subset of 9 soils. We found that the endogenous soil microbiota could limit L. monocytogenes survival especially when soil pH was greater than 7, whereas in acidic soils, survival ratios in sterilized and unsterilized microcosms were not statistically different. These results point out the critical role played by both the endogenous microbiota and the soil physic-chemical properties in determining the survival of L. monocytogenes in soils.

Highlights

  • Listeria monocytogenes is a food-borne pathogen responsible for listeriosis a potentially fatal disease that results in meningitis, septicemia or abortion [1,2]

  • As soils were stored for varying periods, a regression analysis between L. monocytogenes survival rates and soil sampling date was done

  • Focusing on a subset of 9 soils chosen for their contrasted physico-chemical properties and land use characteristics (Table 3), we evaluated the impact of the soil endogenous microbiota on the survival ratio of L. monocytogenes in a replicated complete block design

Read more

Summary

Introduction

Listeria monocytogenes is a food-borne pathogen responsible for listeriosis a potentially fatal disease that results in meningitis, septicemia or abortion [1,2]. This disease can affect humans and a large range of wild and domestic animals [3]. Outbreaks of human listeriosis have been reported worldwide and are mainly associated with consumption of various contaminated food such as meat, dairy products, vegetables and fish [4,5,6,7]. Ready-to-eat food products, which are consumed without further cooking, are most likely at the origin of listeriosis outbreaks [8,9,10,11]. L. monocytogenes is recognized as one of the most important food-borne pathogen

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.